
Objective: The present research compared and 
contrasted the workload associated with using in-vehicle 
information systems commonly available in five different 
automotive original equipment manufacturers (OEMs) 
with that of CarPlay and Android Auto when used in the 
same vehicles.

Background: A growing trend is to provide access 
to portable smartphone-based systems (e.g., CarPlay and 
Android Auto) that support an expansion of various in-
vehicle infotainment system features and functions.

Method/Results: The study involved on-road test-
ing of 24 participants in each configuration of five vehicles 
crossed with the three different infotainment systems: the 
embedded portion of the native OEM systems, CarPlay, 
and Android Auto. Our analysis found that workload was 
significantly greater for the embedded portion of the native 
OEM systems than for CarPlay and Android Auto. The 
strengths and weaknesses of each CarPlay and Android 
Auto traded off in such a way that the overall demand 
associated with using the two systems did not differ.

Conclusion: CarPlay and Android Auto provided 
more functionality and resulted in lower levels of work-
load than the embedded portion of the native OEM info-
tainment systems.

Application: Potential applications of this research 
include refinements to CarPlay and Android Auto to 
address variations in workload as a function of task type, 
the modality of interaction, and OEM implementation of 
the system.

Keywords: driver distraction, workload, in-vehicle info-
tainment systems, android auto, carplay

Driver distraction arises from a combination of 
sources (Ranney, Garrott, & Goodman, 2000; 
Strayer, Watson, & Drews, 2011). Impairments 
to driving can be caused by competition for 
visual information processing, such as when 
drivers take their eyes off the road to perform a 
task. Impairments can also come from manual 
interference, as in cases where drivers take their 
hands off the steering wheel to perform an 
operation. Finally, cognitive sources of distrac-
tion occur when attention is withdrawn from 
the processing of information necessary for the 
safe operation of a motor vehicle. These sources 
of distraction can operate independently, but 
they are not mutually exclusive, and therefore, 
different tasks can result in impairments from 
one or more of these sources. Moreover, few if 
any tasks are “process pure” (Jacoby, 1991) and 
instead often place demands on multiple 
resources (Wickens, 2008).

Many In-Vehicle Information Systems (IVIS), 
also known as infotainment systems, involve 
complex and multimodal interactions to perform 
a task. For example, to select a particular music 
track, a driver might push a button on the steer-
ing wheel, issue a voice-based command, view 
options presented on a display located in the 
center stack, and then manually select the 
desired track by using the touch screen. Com-
plex multimodal IVIS interactions such as this 
may distract motorists from the primary task of 
driving by diverting the eyes, hands, and/or 
mind from the roadway (Regan, Hallett, & Gor-
don, 2011; Regan & Strayer, 2014).

Prior research has shown that workload expe-
rienced by drivers systematically varies as a 
function of the different tasks, modes of interac-
tion, and system (vehicles; see also Angell et al., 
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2006; Engström, Johansson, & Östlund, 2005; 
Kidd, Dobres, Reagan, Mehler, & Reimer, 2017; 
Mehler et al., 2016; Zhang, Angell, Pala, & Shi-
monomoto, 2015). In general, many of these 
IVIS features have been shown to be distracting 
to drivers and should not be enabled while the 
vehicle is in motion (cf. National Highway Traf-
fic Safety Administration [NHTSA], 2013, p. 
24832). However, a growing trend is to provide 
access to portable systems that support an expan-
sion of various IVIS features and functions. For 
example, both Apple’s CarPlay® and Google’s 
Android Auto® are software platforms on the 
iPhone and Android smartphones, respectively, 
that allow the driver to pair their phone with a 
vehicle to perform many of the tasks offered by 
the original equipment manufacturers (OEMs) 
embedded infotainment systems. These systems 
(Apple CarPlay and Android Auto) are increas-
ingly being offered by OEMs as an integrated 
part of their onboard infotainment systems. It is 
unknown how these integrated systems perform 
relative to the IVIS systems developed by the 
OEMs. The Android Auto and Apple CarPlay 
apps work in the following way. A smartphone 
running the Android Auto or Apple CarPlay app 
is connected to the vehicle (e.g., often by Blue-
tooth). The app acts as a “master” to the infotain-
ment system’s “head unit” that is located in the 
vehicle’s center stack—and that infotainment 
system “head unit” serves as an external display 
for the smartphone, while acting as a controller 
for the supported Android Auto or Apple CarPlay 
software in a car-specific user interface.

Experimental Overview
The present study evaluated the cognitive 

and visual demands, subjective workload, and 
task completion time for a variety of tasks using 
Apple CarPlay, Android Auto, and five differ-
ent OEM systems. In addition, the impact of 
different modes of interaction (auditory vocal, 
center screen display) was also assessed. For all 
tasks and systems, the measured demand was 
also benchmarked against three different control 
conditions: a single-task baseline (driving only), 
a high demand N-back (representing a bench-
mark for high cognitive load), and a demanding 
variant of the Surrogate Reference Task (SuRT; 
a benchmark for high visual demand). From this 

design, it was possible to determine the effects 
of cognitive and visual demand associated with 
different interface systems (CarPlay, Android 
Auto, and the embedded portion of the native 
OEM systems), task types (calling and dialing, 
audio entertainment, navigation, and text mes-
saging), and modes of interactions (auditory/
vocal vs. center stack).

Method
Participants

Sixty-four participants (32 female; 21–36 
years, M = 25) were recruited via flyers and 
social media posts. All participants were native 
English speakers, had normal or corrected-to-
normal color vision, held a valid driver’s license 
and proof of car insurance, and had not been the 
at-fault driver in an accident within the past two 
years. Participants were initially naïve to the 
specific IVIS tasks and systems but were trained 
until they felt comfortable performing each of 
the requested interactions. Following University 
of Utah policy, participants were required to 
take and pass a 20-min online defensive driving 
course and certification test. Compensation was 
prorated at $20 per hour. This research com-
plied with the American Psychological Associa-
tion Code of Ethics and was approved by the 
Institutional Review Board at the University of 
Utah (IRB 00052567). Informed consent was 
obtained from each participant.

Stimuli and Apparatus
Vehicles and systems.  Vehicles were selected 

for inclusion in the study based on whether the 
native portion of the OEM infotainment system 
supported both CarPlay and Android Auto, as 
well as the availability of vehicles for testing. The 
vehicles and systems are described in Table 1.

Each vehicle was equipped with two Garmin 
Virb XE action cameras, one mounted under the 
rearview mirror to provide recordings of partici-
pants’ faces, and another mounted near the pas-
senger seat shoulder to provide a view of the 
dashboard area for infotainment interaction. 
Video was recorded at 30 frames per second, at 
720p resolution. An iPad Mini 4 was used for 
the SuRT task and to administer the self-reported 
measures of workload.
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Driving route.  A suburban residential street 
with a 25-mph speed limit was used for the on-
road driving study. Testing was done during 
normal daylight hours. The route consisted of a 
straight road with four stop signs and two speed 
bumps. Participants were required to follow all 
traffic laws and adhere to the speed limit at all 
times. The driving route was approximately two 
miles long one-way with an average drive time 
of 6 min. A research assistant was present in the 
passenger seat of each vehicle for safety moni-
toring and data collection. The research assis-
tant monitored the roadway for any potential 
hazards and alerted the participant if any eva-
sive actions were required. The research assis-
tant also ensured adherence to the posted speed 
limit, made sure that participants stopped at the 
stop signs, and followed the rules of the road.

Tasks and modes of interaction.  During the 
study, participants interacted with the CarPlay, 
Android Auto, or the native portion of the OEM 
system to perform tasks involving audio enter-
tainment, calling and/or dialing, navigation, and 
text messaging, shown in Table 2. For each task 
type, a list of task trials was created, which the 
driver completed in sequence. Task lists were 
standardized across systems as much as possi-
ble, given the variability in system interactions.

Modes of interaction for a particular vehicle 
were selected based on system capabilities as 
well as compatibility with the to-be-performed 
tasks. Tasks could either be performed using a 
center stack display or through auditory vocal 
(voice) commands. Center stack interfaces were 
located in the middle of the dash to the right of 
the driver and allowed a variety of different 

inputs, such as touchscreen or physical buttons. 
Voice-based interactions with the auditory vocal 
commands were initiated by a button press or 
through a voice command (e.g., “Hey Siri” or 
“OK Google”). While all vehicles had center 
screens and supported voice commands, not all 
task combinations were supported by these 
modes of interaction (see Table 3). Moreover, 
different systems varied in the sequencing and 
syntax to accomplish the tasks. Tasks were 
developed in consideration of these differences 
to test the various combinations of features and 
functions available in each system.

Detection Response Task (DRT).  A variant 
of the standard DRT was used to maximize sen-
sitivity to both cognitive and visual attention. 
Participants responded to both a vibrotactile 
stimulus and a remote visual stimulus (cf. Inter-
national Organization for Standardization [ISO] 
17488; ISO, 2015). A vibrotactile device was 
positioned under the participant’s left collar-
bone and, following ISO guidelines, the vibro-
tactile device emitted a small vibration stimulus 
intermittently, similar to a vibrating cell phone. 
A remote LED light was also placed along a 
strip of fabric fastener on the dashboard, such 
that the participants only saw the reflection of 
the light, directly in their line of sight (see Fig-
ure 1). The remote light stimulus consisted of a 
change in color from orange to red, a variant 
from the ISO standard, developed and evalu-
ated by Castro, Cooper, and Strayer (2016; see 
also Cooper, Castro, & Strayer, 2016).

When participants felt a vibration or saw 
the light change colors, they were instructed 
to respond as quickly as possibly using a 

Table 1: Vehicle Make/Model, Smartphones, and Operating Systems

Make/Model Native Systema
CarPlay

(iPhone 7)b Android Auto (Google Pixel 2)b

2017 Honda Ridgeline RTL-E HondaLink iOS 10.3.3 OS 7.1.2 (app v2.6.573463)
2017 Ford Mustang GT SYNC 3 iOS 10.3.3 OS 7.1.2 (app v2.6.573463)
2018 Chevrolet Silverado LT MyLink iOS 11.0.3 OS 8.0.0 (app v2.7.573954)
2018 Kia Optima UVO iOS 11.0.3 OS 8.0.0 (app v2.8.5754514)
2018 Ram 1500 Laramie Uconnect iOS 11.0.3 OS 8.0.0 (app v2.7.573954)

Note. Smartphones were all on T-Mobile network.
aA Bluetooth paired LG K7 Android smartphone was used for the evaluation of each of the native systems.
bPhone was connected via USB.
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microswitch attached to their left index or 
middle finger. The tactor and light were 
equally probable and programmed to occur 

every 3 to 5 s (with a rectangular distribution 
of interstimulus intervals within that range) 
and lasted for 1 s or until the participant 

Table 2: Description and Examples of the Four Task Types Evaluated in the Study

Task Types Description Examples

Audio 
entertainment

Participants changed the current music selection 
to different songs, artists, music sources (e.g., 
radio, phone), or genres.

Listen to the song “99 Red 
Balloons”

Play a song by the artist Eminem
Calling and 

dialing
Participants were instructed to make a call to 

the personal or work number of a designated 
contact (from a list of 91 contacts). When 
supported by the system, participants were 
also instructed to manually dial a phone 
number.

Jack Olsen would like you to call 
him on his cell phone

Try Helen Harold on her mobile 
number

Text messaging Participants were provided with hypothetical 
scenarios in which they were instructed to 
respond appropriately via text.

Let Hugo Grant’s office know 
you’re going to be late

Text Kevin Malcome to ask for 
directions

Navigation  
entry

Participants started and canceled route guidance 
to different locations based on hypothetical 
situations they were given that differed slightly 
according to the options available in each 
system.

Grab yourself a cup of coffee 
from Cafe on 1st

Fill up at the closest gas station

Table 3: Tasks and Modes of Interaction Supported in Each Vehicle

Vehicle/System

Condition

Audio Entertainment Calling and Dialing Text Messaging Navigation Entry

CS AV CS AV CS AV CS AV

Third-party systems
  Android Auto ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓

  Apple CarPlay ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Native systems
 � Chevrolet  

  Silverado LT
✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗

 � Ford Mustang GT ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

 � Honda Ridgeline  
  RTL-E

✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓

  Kia Optima LX ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗

 � Ram 1500 Laramie ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗

Note. Checkmarks indicated that the task/mode combination was tested. Xs denote task/mode combinations that 
were not supported or were locked out by the original equipment manufacturer (OEM) when the vehicle was in 
motion. CS = Center Stack; AV = Auditory Vocal.
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pressed the microswitch. Each press of the 
switch was counted and recorded, but only the 
first response was used to determine response 
time to the stimuli.

The processing requirements of the DRT are 
minimal; however, it is possible that its inclu-
sion could increase the subjective workload of 
the driver compared with conditions without the 
DRT test. In our earlier work, we compared the 
subjective workload of one group of drivers who 
were using the DRT with that of another group 
who performed the same tasks without the DRT 
(see Strayer et al., 2015) and found that the DRT 
did not increase the workload of the driver. Like-
wise, Stojmenova and Sodnik (2018) found that 
the pupil diameter on trials with and without the 
DRT did not differ, indicating that the DRT did 
not impose additional cognitive load. Using a 
within-subjects design, Castro, Strayer, Matzke, 
and Heathcote (in press) compared pursuit-
tracking performance with and without the DRT 
and found minimal changes in tracking perfor-
mance. In driving simulation, Stojmenova and 
Sodnik (2018) found that the addition of the 
DRT did not alter mean driving speed or accel-
eration; however, the variability of these mea-
sures was increased by the DRT. A similar analy-
sis using the DRT to assess workload in a com-
plex multitasking study, Palada, Strayer, Neal, 
Ballard, and Heathcote (2017) also found that 

the DRT had minimal (and nonsignificant) 
effects on primary task performance (i.e., <10 
ms). On the whole, the processing requirements 
of the DRT are such that it seems to have mini-
mal impact on the driving task.

Procedure
Following the informed consent and study 

onboarding, participants were provided the time 
to become accustomed to the vehicle, the route, 
and the DRT. For the CarPlay and Android Auto 
systems, participants also completed the voice 
training to improve voice activation and accu-
racy. Participants were trained to interact with 
and complete the tasks using the assigned mode 
of interaction before each condition began. Par-
ticipants were required to complete three task tri-
als without error prior to starting the driving task 
for each of the system interactions. Once partici-
pants demonstrated competence in their ability to 
interact with the system, the experiment began.

Experimental blocks.  Participants com-
pleted specific steps involving interactions with 
CarPlay, Android Auto, or native potion of the 
OEM system to complete a task (i.e., using the 
touch screen to tune the radio to a particular sta-
tion, using voice recognition to find a particular 
navigation destination, etc.) while driving the 
vehicle based on the instruction of the in-vehi-
cle investigator. Driving the vehicle was con-
sidered the primary task, interacting with the 
infotainment system was considered the sec-
ondary task, and responding to the DRT was 
considered the tertiary task. During each block, 
drivers repeated one type of task, which varied 
slightly on each iteration. The order of condi-
tions for each vehicle (see Table 3) was counter-
balanced across participants.

At each end of the route (block), participants 
were asked to pull over on the side of the road. 
The next block, which included a new task and 
mode of interaction, began in the opposite direc-
tion of the same route and concluded in the same 
manner. This was repeated until all conditions 
were completed, resulting in alternating travel 
directions for each experimental block.

Participants also performed three control 
tasks while driving one length of the desig-
nated route per task. The control tasks were as 
follows:

Figure 1. A research participant driving the 2017 
Honda Ridgeline. Note the orange DRT light 
projected onto the windshield in the driver’s forward 
field of view and the DRT microswitch attached to 
the participant’s left index finger. The vibrotactile 
device attached to the participant’s collarbone is not 
shown in the photo. DRT = Detection Response Task.
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•• Single-task baseline: Participants performed a 
single-task baseline drive on the designated route, 
performing only the DRT without interacting with 
the infotainment system.

•• Auditory N-back task (high cognitive demand ref-
erent): A prerecorded, randomized set of numbers 
ranging from zero to nine were presented to driv-
ers (e.g., Mehler, Reimer, & Dusek, 2011). In each 
sequence, numbers were spoken aloud at a rate of 
one digit every 2.25 s. Participants were instructed 
to verbally repeat the number that was presented 
two trials earlier (i.e., a two-back task) as they 
concurrently listened for the next number in the 
sequence. During the N-back task, participants 
also responded to the DRT stimuli.

•• SuRT task (high visual demand referent): The 
SuRT was performed on an iPad Mini 4 mounted 
in a similar position in all the vehicles (close to the 
center stack display). The target stimulus was an 
open circle 1.5 cm in diameter presented among 
21 to 27 distractor circles 1.2 cm in diameter. The 
circles did not overlap and were printed in black 
on a white background. For each trial, participants 
were instructed to touch the location of the target 
(the variant of the SuRT task used in the present 
research matched as closely as possible the visual 
display characteristics described in ISO/TS 14198 
(ISO, 2012); however, participants responded to 
the target by pressing the touch-screen location 
rather than using a directional keypad. Pilot test-
ing of the SuRT task found a visual search slope 
of approximately 20 ms/item, a value above the 
upper threshold associated with automatic visual 
search (e.g., Schneider & Shiffrin, 1977; Shiffrin 
& Schneider, 1977). This task places visual/man-
ual demands on drivers that are more similar in 
nature to interactions using the center stack LCD 
touch screen). Immediately thereafter, a new dis-
play was presented with a different configuration 
of targets and distractors. The location of targets 
and distractors was randomized across the trials in 
the SuRT task. During the SuRT task, participants 
also responded to the DRT stimuli.

After the completion of each condition, par-
ticipants completed the six-item NASA Task 
Load Index (NASA-TLX; Hart & Staveland, 
1988) to assess the subjective workload of the 
system, along with two additional scales that 
gauged perceived intuitiveness and complexity 
of the IVIS interactions.

Dependent Measures
DRT data were processed following pro-

cedures outlined in ISO 17488 (ISO, 2015). 
All response times faster than 100 ms or 
slower than 2,500 ms were eliminated from 
the overall calculation for reaction time. Non-
responses or responses that were made after 
2.5 s from the stimulus onset were coded as 
misses. Incomplete, interrupted, or otherwise 
invalid tasks were flagged and excluded from 
the analysis. The DRT-related dependent mea-
sures used in the study are described in the 
following:

•• DRT—Reaction Time: Defined as the sum of all 
valid reaction times to the DRT task divided by the 
number of valid reaction times.

•• DRT—Hit Rate: Defined as the number of valid 
responses divided by the total number of valid 
stimuli presented during each condition.

Task interaction time was derived from the 
time stamp on the DRT data file and defined 
as the time participants first initiated an action 
to the time when the final action for a task was 
completed and the participant said, “Done.” 
Tasks with irregular occurrences and errors in 
administration or performance that may have 
affected task interaction time were marked as 
abnormal during data collection and were not 
included in subsequent analyses.

Data Analysis and Modeling
Following the procedures described by Strayer 

et al. (2017), the raw dependent measures were 
used to derive cognitive, visual, and subjective 
demand scores. Each demand score was based 
on a different underlying measure (see Table 
4) and standardized using performance in the 
single-task baseline condition and one (or both) 
of the high demand referent conditions.

Following the equations in Table 4, the 
demand equivalent to the single-task baseline 
received a rating of 0.0, and the demand equiva-
lent to the high demand referent task (e.g., 
N-back) received a score of 1.0. It follows that 
IVIS tasks tested in the vehicle were similarly 
scaled such that values below 1.0 would repre-
sent a demand lower than the high-demand 
referent, and values greater than 1.0 would 
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denote conditions with a higher demand than the 
referent.

Applications of these formulae provide stable 
workload ratings with useful performance crite-
ria that are grounded in industry standard tasks 
(e.g., NHTSA, 2013, p. 24832; Society of Auto-
motive Engineers, 2015). On occasion, however, 
the approach can result in extreme values when 
either the numerator is unusually small or the 
task time unusually long. To mitigate the poten-
tial for such scores to skew the overall rating, 
scores greater than 3.5 standard deviations from 
the mean (<1% of the data) were excluded from 
analysis.

Experimental Design
From the master set of 64 participants, 24 

were tested in each configuration of five vehicles 

crossed with the three different infotainment 
systems: the native portion of the OEM system, 
CarPlay, and Android Auto (i.e., each cell in the 
5 × 3 factorial design had 24 participants). The 
experiment was a 5 (Vehicle) × 3 (System: OEM 
native system, CarPlay, Android Auto) × 4 (Task 
Type: audio entertainment, calling and dialing, 
text messaging, navigation) × 2 (Mode of Inter-
action: auditory/vocal, center stack) factorial 
design with 24 participants (from the master 
set of 64) evaluated in each of the Vehicle × 
Interaction cells of the factorial. However, not 
all systems and vehicles offered the full facto-
rial design (see Table 3). Moreover, participants 
were tested in a varying number of systems. 
Consequently, a planned missing data design 
was used (e.g., Graham, Taylor, Olchowski, & 
Cumsille, 2006; Little & Rhemtulla, 2013) as 

Table 4: Underlying Measures, Referent, and Derivation of the Various Demand Scores Used in the 
Analysis

Demand Type
Underlying 
Measure

High Demand 
Referent Equation  

Cognitive 
demand

RT (vibrotactile 
DRT)

N-Back IVISTask SingleTask
NbackTask SingleTask

−
−

(Equation 1)

Visual 
demand

Hit rate (remote 
DRT)

SuRT SingleTask IVISTask
SingleTask SuRTTask

−
−

(Equation 2)

Subjective 
demand

6 NASA-TLX 
subscales (avg.)

N-Back and 
SuRT (avg.)

IVISTask SingleTask
NbackTask SuRTTask

SingleT

−
+






 −2

aask

(Equation 3)

Task 
interaction 
time

Time (s) 24-s threshold IVISTask
seconds24

(Equation 4)

Overall 
demand

Combination 
of cognitive, 
visual, 
subjective 
demand, and 
task interaction 
time

N-Back and 
SuRT (avg.)

Cog Vis Subj
InteractionTime

+ +( )
×

3

(Equation 5)

Note. Using the National Highway Traffic Safety Administration (2013) reference limit of 12 s on Total Shutter 
Open Time under visual occlusion testing, we reasoned that a corresponding task interaction time referent might 
reasonably be set at 24 s (derived by taking 12 s shutter open time, and adding 12 s of shutter closed time—to 
account for the time elapsing during shutter-closures between open periods, plus one additional period of closure 
at the end). The general principle here is that these multimodal IVIS interactions should be able to be performed in 
24 s or less when paired with the task of operating a moving motor vehicle. DRT = Detection Response Task; IVIS = 
in-vehicle information systems; NASA-TLX = NASA Task Load Index.
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each participant was tested in an average of 
two vehicles with CarPlay and two vehicles 
with Android Auto. It was necessary to use this 
approach because it was not practical or feasible 
for all participants to drive all cars—especially 
as different vehicles were available at different 
points in time during the study.

Results
A bootstrapping procedure was used to esti-

mate the 95% confidence intervals (CI) around 
each point estimate in the analyses reported later. 
The bootstrapping procedure, needed because 
the standardized scores are ratios derived from 
other measures, used random sampling with 
replacement to provide a nonparametric esti-
mate of the sampling distribution. The boot-
strapping procedure involved generating 10,000 
bootstrapping samples, each of which were cre-
ated by sampling with replacement N samples 
from the original “real” data. From each of the 
bootstrap samples, the mean was computed, 
and the distribution of these means across the 
10,000 samples was used to provide an estimate 
of the standard error around the observed point 
estimate (Prior to bootstrapping, all scores were 
baseline corrected, minimizing the potential 
for violations of homogeneity of variance in 
resampling procedures; for example, Davison, 
Hinkley, & Young, 2003). The baseline correc-
tion eliminated any effects of participant in the 
analyses reported in the following. The obtained 
95% CIs were used to determine statistical sig-
nificance across the different conditions.

Linear mixed effects analyses were per-
formed using R 3.3.1 (R Core Team, 2016), 
lme4 (Bates, Maechler, Bolker, & Walker, 2015), 
and multcomp (Hothorn, Bretz, & Westfall, 
2008). This approach is particularly well suited 
for unbalanced designs with different numbers 
of observations for different participants. In the 
analyses reported in the following, Task Type, 
Mode of Interaction, Task Type × Mode of Inter-
action, and Vehicle were entered independently. 
The number of vehicles driven by each partici-
pant was entered as a fixed effect whereas 
Participant, Vehicle, Mode of Interaction, and 
Task Type were entered as random effects. In 
each case, p values were obtained by likelihood 
ratio tests comparing the full linear mixed effects 

model with a partial linear mixed effects model 
without the effect in question. This linear mixed 
modeling analysis has the advantage of analyz-
ing all available data while adjusting fixed 
effect, random effect, and likelihood ratio test 
estimates for missing data (Melo, Vasconcellos, 
& Lemonte, 2009). This statistical approach also 
controls for any effects of learning across testing 
sessions.

Empirical Data and Inferential Statistics
The empirical data are presented in Figures 

2 to 5. The figures illustrate the major trends 
from the factorial analysis for the dependent 
measures of cognitive demand (Equation 1), 
visual demand (Equation 2), subjective demand 
(Equaion 3), and task interaction time (Equa-
tion 4), and the integrated overall demand score 
(Equation 5). A description of the major trends 
obtained in the linear mixed effects analysis 
follows the presentation of each dependent 
measure. In each figure, the solid black line rep-
resents single-task performance and the dashed 
red line represents the performance on the ref-
erent task/criterion (from Table 4). Error bars 
represent 95% CIs. The statistical comparison 
of linear mixed effects models with and without 
the independent variable or interaction of inter-
est is also indicated for each dependent measure.

As shown in Figure 2, the system used deter-
mined the profiles for visual, χ2(2) = 9.99, p < 
.01; subjective, χ2(2) = 6.94, p < .05; and over-
all, χ2(2) = 6.04, p < .05; but not for cognitive, 
χ2(2) = 4.23, p > .05; or temporal, χ2(2) = 3.62, 
p > .05, demand. First, cognitive demand across 
each of the systems was relatively constant and 
was higher than the N-back reference task. Con-
versely, both the CarPlay and Android Auto plat-
forms resulted in less visual demand than the 
native portion of the OEM systems, and both 
systems were significantly below the SuRT ref-
erence task. The overall demand of CarPlay and 
Android Auto systems did not significantly dif-
fer from one another; however, both resulted in 
significantly lower levels of workload than the 
embedded portion of the native OEM systems 
and both significantly below the red line (refer-
ent tasks).

As shown in Figure 3, the modality of inter-
action with each system determined the profiles 
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for cognitive, χ2(2) = 15.97, p < .01; visual, 
χ2(2) = 35.86, p < .01; subjective, χ2(2) = 39.44, 
p < .01; temporal, χ2(2) = 26.07, p < .01; and 
overall, χ2(2) = 44.33, p < .01, demand. Cogni-
tive demand was lower for the auditory/vocal 
interface than for the center stack interface. This 
trend was apparent with the CarPlay system and 
even more pronounced with Android Auto. 
Visual was lower for both the auditory vocal and 
center stack interactions when compared with 
the embedded portion of the native OEM sys-
tems. Overall demand, for both modes of inter-
action, was highest with the native portion of the 
OEM systems, followed by CarPlay, and Android 
Auto. Interestingly, overall demand with Car-
Play was lower for center stack interactions than 
auditory/vocal interactions. By contrast, overall 

demand for Android Auto was lower for audi-
tory/vocal interactions than for center stack 
interactions.

As shown in Figure 4, the type of task being 
performed with each system determined the pro-
files for cognitive, χ2(6) = 24.28, p < .01; visual, 
χ2(6) = 14.24, p < .05; subjective, χ2(6) = 31.13, 
p < .01; temporal, χ2(6) = 415.12, p < .01; and 
overall, χ2(6) = 168.98, p < .01, demand. Nota-
bly, the time demands required by each task 
were quite variable across the three interface 
types. Moreover, the overall demand across task 
clearly illustrates performance trade-offs. For 
example, overall demand when sending text 
messages was lower with CarPlay than it was for 
Android Auto, but Android Auto had lower 
overall demand than CarPlay for navigation 

Figure 2. The effect of system type on each of the component demand measures.

Figure 3. The interaction between system and mode of interaction for each of the component demand 
measures.
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entry. In most cases, the native portion of the 
OEM systems were associated with higher over-
all demand than CarPlay and Android Auto. 
(The exception was text messaging where 
Android Auto was nominally more demanding 
than the native portion of the OEM system.)

As shown in Figure 5, the vehicle driven while 
using each system determined the profiles for 
cognitive, χ2(8) = 42.67, p < .01; visual, χ2(8) = 
40.65, p < .01; subjective, χ2(8) = 35.8, p < .01; 
temporal, χ2(8) = 133.21, p < .01; and overall, 
χ2(8) = 89.38, p < .01, demand. A general trend 
seen in Figure 5 is that the various components of 
demand for Android Auto and CarPlay were rela-
tively consistent across vehicles. The overall 
demand scores suggested that Android Auto was 
more consistent across vehicles than CarPlay, 

which was more consistent than the native por-
tion of the OEM systems.

Discussion
The present research compared the work-

load associated with using the IVIS commonly 
available in five different automotive OEMs 
with that of CarPlay and Android Auto when 
used in the same vehicles. Both CarPlay and 
Android Auto are software platforms for the 
iPhone and Android smartphones, respectively, 
that are made available by the OEMs as an 
integral part of a vehicle’s infotainment system. 
These platforms allow the driver to pair their 
phone with the vehicle and provide the driver 
with an alternative way to perform many of the 
task types supported by the native embedded 

Figure 4. The interaction between system and task type for each of the component demand measures.
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infotainment system offered by the OEMs. 
These systems are often marketed as being 
easier to use than the native portion of the OEM 

systems. We examined how the systems com-
pared with the demand of the systems designed 
by the OEMs (and/or their system suppliers) and 

Figure 5. The vehicle by system interaction for each of the component demand scores.
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how different implementations of these systems 
varied in different vehicle types.

The present study involved on-road testing of 
24 participants in each configuration of five 
vehicles crossed with the three different info-
tainment systems: the native portion of the OEM 
system, CarPlay, and Android Auto (i.e., each 
cell in the 5 × 3 factorial design had 24 partici-
pants). Replicating Strayer et  al. (2017), we 
found that the task types differed in overall 
demand, with audio entertainment tasks and 
calling and dialing tasks both leading to lower 
demands than the high demand referent (i.e., 
N-back and SuRT). In contrast, text messaging 
and navigation tasks were much more demand-
ing than the referent tasks, although text mes-
saging was significantly less demanding than 
navigation.

A slightly different pattern to that reported in 
our earlier evaluation of IVIS interactions (e.g., 
Strayer et al., 2017) emerged when comparing 
the mode of interaction. Namely, our prior 
research found that auditory/vocal interactions 
were numerically (but not significantly) more 
demanding than center stack interactions. By 
contrast, in the present research, the overall 
demand associated with auditory/vocal interac-
tions was significantly lower than for center 
stack interactions. Comparison between the two 
studies found that the overall demand of center 
stack interactions did not differ, whereas the 
overall demand of auditory/vocal interactions 
was lower in the present study. In part, the 
reduced demand may be attributable to the supe-
rior auditory/vocal interface of Android Auto (as 
well as that of CarPlay, though to a lesser extent), 
when compared with the native portion of the 
OEM systems.

The analysis of present results found that the 
overall demand was significantly greater for the 
native portion of the OEM systems (which, on 
average, was higher than the high demand refer-
ent) than for CarPlay and Android Auto. In addi-
tion, the overall demand associated with using 
CarPlay and Android Auto did not differ, and 
both systems were significantly below the high 
demand referent. Thus, the CarPlay and Android 
Auto systems were significantly less demanding 
than the native portion of the infotainment sys-
tems in the current set of vehicles. Although the 

overall demand did not differ between CarPlay 
and Android Auto, the systems have different 
strengths and weaknesses.

For example, the mode of interaction influ-
enced the overall workload for these systems. 
For CarPlay, the overall demand was nominally 
lower with center stack interactions than for 
auditory/vocal interactions. In contrast, for 
Android Auto, the overall demand was lower 
with auditory/vocal interactions than for center 
stack interactions. The strengths and weaknesses 
of each system traded off relative to each other 
in such a way that, when collapsed over mode of 
interaction, the overall demand of the interac-
tions, as shown in Figure 2, did not differ. The 
native portion of the OEM systems were higher 
(significantly above the high demand referent) 
and more variable in demand for both modes of 
interaction.

The overall demand also varied by task for 
CarPlay and Android Auto systems. For the 
audio entertainment task, overall demand was 
the same for the two systems, and both were sig-
nificantly less demanding than the native por-
tion of the OEM systems. For the calling and 
dialing task, CarPlay was significantly less 
demanding than Android Auto, which was less 
demanding than using the native portion of the 
OEM systems. For the text-messaging task, the 
overall demand was lower for CarPlay than for 
Android Auto with the native portion of the 
OEM systems falling in between (and not sig-
nificantly different from) CarPlay and Android 
Auto. For the navigation task, the overall 
demand of destination entry was significantly 
lower for Android Auto than for CarPlay, which 
was significantly less demanding than using the 
native portion of the OEM systems. As noted 
earlier, the strengths and weaknesses of each 
system traded off relative to each other in such a 
way that, when collapsed over task type, the 
overall demand of the interactions for CarPlay 
and Android Auto did not differ. With regard to 
our research question, this analysis shows that 
some task types are less demanding with one 
system than they are with another.

The present findings also revealed how the 
overall demand varied for different vehicles. 
Across the five vehicles included in this study, 
there was a tight clustering of demand scores for 
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the Android Auto system, a more variable set of 
ratings for CarPlay, and much more variability 
for the native portion of the OEM systems. This 
pattern is seen both within a vehicle (e.g., 
smaller error bars for Android Auto) and across 
the different vehicles (i.e., both within and 
between, participant variability was lower with 
both systems than with the native portion of the 
OEM systems). It is important to underscore that 
the differences between ratings are not due to 
hardware issues given that the same vehicle was 
used for testing of the systems. The differences 
also cannot be attributed to variability in the cel-
lular network or the driving route, as these were 
held constant in our testing. Thus, Android Auto 
and CarPlay vary in demand when they are 
deployed in different vehicles. These differences 
are all the more striking given the greater func-
tionality provided by CarPlay and Android Auto 
compared with the native portion of the OEM 
systems.

Android Auto and Apple CarPlay represent 
the latest technological approach to merging 
core mobile phone functionality with driving. 
The underlying design philosophy and architec-
ture of each approach is largely similar. Both 
systems provide a vehicle–phone pairing that 
increases the capabilities of the infotainment 
systems using local and remote computing 
resources. Both systems provide access to a 
reconfigurable set of driver-selected applica-
tions that are stored on the mobile phone. Both 
systems adapt the user experience to better fit 
the driving context. The present research sug-
gests that this general approach may lead to 
reductions in driver workload even while pro-
viding expanded capabilities to drivers.

Limitations and Caveats
The present study had participants perform 

tasks in a counterbalanced order per the experi-
menter’s instructions, allowing for some causal 
statements regarding the workload associated 
with different systems. However, in real-world 
settings, drivers are free to perform the tasks 
if, when, and where they choose. This compli-
cates the relationship between driver workload 
as measured in experimental studies and crash 
risk. For example, motorists may attempt to 
self-regulate their nondriving activities, limiting 

them to periods where they perceive the risks 
to be lower. Naturalistic methods may be more 
appropriate for assessing motorist’s willingness 
to engage with these systems. However, self-
regulation depends on drivers being aware of 
their performance and adjusting their behavior 
accordingly, an ability that is often limited by the 
same factors that caused them to be distracted in 
the first place (e.g., Horrey, Lesch, Mitsopoulos-
Rubens, & Lee, 2015; Sanbonmatsu, Strayer, 
Biondi, Behrends, & Moore, 2016).

This research was designed with the assump-
tion that drivers will use technology that is 
available to them. No efforts were made to 
weigh results based on likelihood of use, and 
all conditions were treated as equally important 
for the analysis. This research design leads to 
several important caveats that should be con-
sidered when interpreting the results. Principal 
among these is that the same set of tasks was 
not evaluated in each vehicle. Given the com-
plexity of these real-world systems, a compari-
son of equal tasks with equivalent modes of 
interactions was not possible, given the result-
ing and limited subset of the data. That said, the 
tested set of tasks should have favored the 
native interfaces as they supported fewer com-
plex activities (e.g., navigation and texting 
were supported by two and three vehicles, 
respectively). The finding that Android Auto 
and Apple CarPlay generally outperformed the 
embedded portion of the native systems is, 
therefore, more notable.

The equal weighting of tested tasks also car-
ries the implicit assumption that drivers will be 
equally likely to use each of the features and 
functions available in the vehicle. Given the 
unique ways in which these functions are being 
delivered by each of the systems, we saw no jus-
tifiable approach to determine whether certain 
tasks should be treated differently in the analy-
ses than others. As technology improves, it is 
very likely that users will change the way they 
interact with the systems. Usage patterns will 
likely evolve as better interfaces are developed 
and new functionality is introduced into vehi-
cles. Thus, results presented in this report pro-
vide a snapshot of the overall demand profile of 
potential interactions that drivers may have with 
the vehicle and interface but not necessarily the 
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actual demand that may be experienced by users 
of these systems on the roadway.

Some OEMs provide lockouts to prevent the 
use of tasks that have been tested and judged to 
be excessively demanding under “task accep-
tance testing,” or which do not meet “per se” 
criteria under the NHTSA guidelines. Although 
these are intended to be safety-positive actions 
(e.g., under prevailing “voluntary” guidelines), 
there is no reflection of these safety-adhering 
actions in the scoring system, and these systems 
do not receive any credit under the scoring 
method used in the research reported here for 
having taken protective steps to safeguard users. 
Rather, the locked-out tasks are instead treated 
as “missing functionality.”

With respect to the benchmarks, we selected 
as high-demand referent tasks the N-back task 
(e.g., Mehler et  al., 2011) and SuRT (e.g., 
Engström & Markkula, 2007; Mattes, Föhl, & 
Schindhelm, 2007) and adopted a 24-s rule for 
dynamic task interaction time. The 24-s task 
interaction referent was derived based on the 
project team’s interpretation of the NHTSA 
visual/manual guidelines (NHTSA, 2013). One 
may question whether these referents are rea-
sonable. For example, if the referent tasks were 
too easy (or hard), then the absolute ratings 
would be an overestimate (or underestimate) of 
the true demand. However, it is important to 
note that the relative ratings will be insensitive 
to the absolute demand of the referent tasks, so 
long as they are performed in a consistent  
fashion in a counterbalanced order across 
participants.

Summary
CarPlay and Android Auto provided more 

functionality and resulted in lower levels of 
workload than the native portion of the OEM 
infotainment systems. That said, both incurred 
moderately high levels of demand, in relation 
to the referent tasks, thus providing opportuni-
ties to improve the user experience. Moreover, 
variation in demand across task type and mode 
of interaction also suggest areas for further 
improvement. For example, CarPlay had lower 
overall demand than Android Auto for sending 
text messages, and Android Auto had lower 
overall demand than CarPlay for destination 

entry to support navigation. In light of the 
present results, both systems can be improved 
toward more optimal user experiences.
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Key Points
•• CarPlay and Android Auto provided more func-

tionality and resulted in lower levels of workload 
than the native portion of the OEM infotainment 
systems.

•• The overall demand associated with using Car-
Play and Android Auto did not differ.

•• CarPlay and Android Auto have different strengths 
and weaknesses, providing opportunities for both 
to improve the user experience.
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